Nilpotent Hopf Bifurcations in Coupled Cell Systems
نویسندگان
چکیده
Network architecture can lead to robust synchrony in coupled systems and, surprisingly, to codimension one bifurcations from synchronous equilibria at which the associated Jacobian is nilpotent. We prove three theorems concerning nilpotent Hopf bifurcations from synchronous equilibria to periodic solutions, where the critical eigenvalues have algebraic multiplicity two and geometric multiplicity one, and discuss these results in the context of three different networks in which the bifurcations occur generically. Phenomena stemming from these bifurcations include multiple periodic solutions, solutions that grow at a rate faster than the standard λ 1 2 , and solutions that grow slower than the standard λ 1 2 . These different bifurcations depend on the network architecture and, in particular, on the flow-invariant subspaces that are forced to exist by the architecture.
منابع مشابه
Stability Computations for Nilpotent Hopf bifurcations in Coupled Cell Systems
Vanderbauwhede and van Gils, Krupa, and Langford studied unfoldings of bifurcations with purely imaginary eigenvalues and a nonsemisimple linearization, which generically occurs in codimension three. In networks of identical coupled ODE these nilpotent Hopf bifurcations can occur in codimension one. Elmhirst and Golubitsky showed that these bifurcations can lead to surprising branching patterns...
متن کاملNormal forms of Hopf Singularities: Focus Values Along with some Applications in Physics
This paper aims to introduce the original ideas of normal form theory and bifurcation analysis and control of small amplitude limit cycles in a non-technical terms so that it would be comprehensible to wide ranges of Persian speaking engineers and physicists. The history of normal form goes back to more than one hundreds ago, that is to the original ideas coming from Henry Poincare. This tool p...
متن کاملHopf bifurcations in time-delay systems with band-limited feedback
We investigate the steady-state solution and it’s bifurcations in time-delay systems with band-limited feedback. This is a first step in a rigorous study concerning the effects of AC-coupled components in nonlinear devices with time-delayed feedback. We show that the steady state is globally stable for small feedback gain and that local stability is lost, generically, through a Hopf bifurcation...
متن کاملSynchronized States Observed in Coupled Four Oscillators
Systems of coupled oscillators are widely used as models for biological rhythmic oscillations such as human circadian rhythms[1, 2], finger movements, animal locomotion[3], swarms of fireflies that flash in synchrony, synchronous firing of cardiac pacemaker cells[5, 6], and so on. Using these coupled oscillator models, many investigators have studied the mechanism of generation of synchronous o...
متن کاملAmplified Hopf Bifurcations in Feed-Forward Networks
In [18] the authors developed a method for computing normal forms of dynamical systems with a coupled cell network structure. We now apply this theory to one-parameter families of homogeneous feed-forward chains with 2-dimensional cells. Our main result is that Hopf bifurcations in such families generically generate branches of periodic solutions with amplitudes growing like ∼ |λ| 1 2 ,∼ |λ| 1 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Applied Dynamical Systems
دوره 5 شماره
صفحات -
تاریخ انتشار 2006